
1

Transport Layer Security
(TLS)

Bill Burr
william.burr@nist.gov
November 2, 2001

Transport Layer Security (TLS)

♦ Version 3.1 of Secure Socket Layer (SSL)
– “standardized” by IETF RFC2246
– Several earlier versions

• V2 not very secure

♦ End-to-end between a client and server
– Sits on top of TCP
– Requires reliable connection

♦ Most important Internet crypto protocol?
– Secure web pages
– E-mail and LDAP access control

2

TLS Example: Client Authent.
Client Server
 Client Hello
supported ciphers
client_random
compression Server Hello

TLS_RSA_WITH_3DES...
Server_random
compression
session_ID

 Certificate
Server RSA Certificate

 Certificate Request
certiricte_types
certificate_authorities

 Hello Done

Optional messages for
client authentication have
gold background

TLS Example: Client Authent.
Client Server
 Client Certificate
client’s PK certificate

Client Key Exchange
ESK(pre_master_secret)

 Certificate Verify
Signature (prev. messages)

 Change Cipher Spec

Handshake Finished
verify_data

 Change Cipher Spec

Handshake Finished
verify_data

3

3DES Cipher Suites

♦ TLS_RSA_WITH_3DES_EDE_CBC_SHA

♦ TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA

♦ TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA

♦ TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

♦ TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA

♦ TLS_RSA_WITH_NULL_SHA

AES Cipher Suites

♦ TLS_RSA_WITH_AES_128_CBC_SHA
♦ TLS_DH_DSS_WITH_AES_128_CBC_SHA
♦ TLS_DH_RSA_WITH_AES_128_CBC_SHA
♦ TLS_DHE_DSS_WITH_AES_128_CBC_SHA
♦ TLS_DHE_RSA_WITH_AES_128_CBC_SHA
♦ TLS_RSA_WITH_AES_256_CBC_SHA
♦ TLS_DH_DSS_WITH_AES_256_CBC_SHA
♦ TLS_DH_RSA_WITH_AES_256_CBC_SHA
♦ TLS_DHE_DSS_WITH_AES_256_CBC_SHA
♦ TLS_DHE_RSA_WITH_AES_256_CBC_SHA

4

Pseudorandom Function (PFR)

♦ Feeds a secret, a label, and a seed into an
iterated HMAC to generate a pseudorandom
stream

♦ Uses SHA1 & MD5
– Intended to be secure if either is secure

• The secret is split into halves, and one half is fed
into the SHA1 HMAC and the other into the MD5
HMAC and the outputs are exclusive ORED. If one
hash is bad enough, entropy would be lost.

Pseudorandom Function (PRF)

P_hash(secret, seed) = HMAC_hash(secret, A(1) || seed) ||
HMAC_hash(secret, A(2) || seed) || HMAC_hash(secret, A(3) || seed) ||
...

Where || indicates concatenation.

 A() is defined as:
 A(0) = seed
 A(i) = HMAC_hash(secret, A(i-1))

P_hash is iterated to produce the required quantity of data.

TLS's PRF is created by splitting the secret into two halves and
using one half to generate data with P_MD5 and the other half to
generate data with P_SHA-1, then exclusive-or'ing the outputs of
these two expansion functions together.

PRF(secret, label, seed) = P_MD5(S1, label || seed) XOR P_SHA-1(S2,
label || seed);

5

Pseudorandom Function (PRF)

♦ Used with pre_master_secret, client-random
server_random & label “master_secret” to
generate 48-byte master-secret

♦ Used with master_secret, server_random,
client_random & label “key expansion” to
generate key block

♦ Also used to generate the verify_data key
confirmation parameter of the Handshake
Finished message

Proposed Client Guidance

♦ Only do TLS (version 3.1)
– But client is normally expected to be able to do highest

version specified in Client Hello, plus every previous
version!

♦ Server can choose any suite the client includes in
Client Hello message

♦ Offer only 3DES or AES Cipher suites
– Never include 40 or 56-bit suites
– Encryption not required but anonymous cipher suites

not allowed

♦ 1024-bit RSA/DSA client certificates are OK until
2015

6

Proposed Server Guidance

♦ Implement only TLS, not SSL
– Clients that can’t do TLS are out of luck

♦ Use only 3DES or AES Cipher Suites
♦ Server key management certificate subject

key size needs to match confidentiality
requirements
– If data must be kept secret after 2015, then

RSA/DSA encryption keys larger than 1024 are
needed.

For Maximum Security

♦ RSA or DSA authentication with ephemeral
Diffie-Hellman key exchange
– E.g., TLS_DHE_RSA_WITH_AES_128_CBC_SHA

– Perfect forward secrecy

– Potentially large DH keys for long term confidentiality,
with whatever authentication key size is currently
needed

♦ But,
– How many products do ephemeral Diffie-Hellman?

– Performance price

7

Issues

♦ Do implementations check server identity?
♦ Use of same RSA server key for authentication

and key management
♦ Is payload SHA-1 HMAC strong enough for 112,

128 & 256-bit encryption?
♦ Is 96-bit verify-data key confirmation strong

enough for 112, 128 & 256-bit encryption?
♦ Is the PRF strong enough for 112, 128 & 256-bit

encryption?
– Does MD5 HMAC poison the well?

♦ “Non-standard” signature formts
♦ Diffie-Hellman doesn’t follow a NIST scheme

Questions and Discussion

